1712A **Compressor/Limiter** a MARK IV company # **KEY SPECIFICATIONS** Frequency Response: (reference 1 kHz) 20 Hz to 20 kHz, +0/-1 dB. **Threshold Range:** Continuously variable from -45 to +20 dB. **Compression Ratio:** Continuously variable from 1:1 to $\infty:1$. **Maximum Compression:** 60 dB. Attack Time: Program dependent; 12 ms for 10 dB input level above threshold, 8 ms for 20 dB. 4 ms for 30 dB. **Release Time:** Program dependent; automatically variable from 0 to 750 ms; affected by front panel control settings. **Output Gain:** Continuously variable from -20 to +20dB. ### THD: (0 dBv input, unity gain, <0.03%. no compression, 30 kHz low pass filter) <0.05%. (O dBy input, unity gain, reference 1 kHz, up to 20 dB compression) ### IMD (SMPTE): (0 dBv input, unity gain, <0.03%. no compression) ### Noise: (below maximum output, <-86 dB. output gain control at +20 dB, 30 kHz low pass filter) ## **DESCRIPTION** The 1712A Compressor/Limiter addresses the minimization of level differences between paging system announcers and transient protection for loudspeaker systems. Its feed-forward design permits compression ratios up to ∞:1 with complete stability to automatically restrict the system output to a predetermined level. Special compensation circuitry minimizes coloration and audible side-effects for virtually unmatched sonic qualities. The single channel unit features an rms-calibrated linear integration detector. Its logarithmic output (linear in decibels) closely matches the characteristics of the human ear for a more natural sounding response when undergoing gain changes. The detector is also compensated to prevent peak reversion" - a condition that occurs when low frequency signals are below the period chosen for the integration time. Without correction, an rms or averaging detector would revert to peak detection resulting in an overmeasurement of the low frequency energy. This causes over-compression, increased distortion, and audible pumping. The **1712A** is free from these side effects. The input level for a 0 dB reference is determined by an internal jumper which may select -10, 0, +4, or +8 dBv. This permits interfacing with virtually any industry standard line level. Two LED arrays simultaneously display gain reduction and output level for effective monitoring of system operation. The continuously variable Threshold, Compression Ratio, and Output Gain controls are recessed in screwdriver slotted adjustments to minimize inadvertent changes to the control settings. Program-dependent attack and release times assure natural sounding compression without the need for continuous manual adjustment. The Altec Lansing model 1712A compressor/limiter is the choice among professionals where serious level control and transient protection is demanded. # **SPECIFICATIONS** (continued) Input: (reference 0 dBv = 0.775 V rms) Impedance: 20K ohms balanced. 10K ohms unbalanced. Nominal Level: Selectable by internal jumper for -10, 0, +4, +8 dBv. Maximum Level: +20 dBv (7.75 V rms). **Output:** (reference 0 dBm = 0.755 V rms across 600 ohms) Impedance: 44 ohms balanced. 22 ohms unbalanced. Maximum Level: +20 dBm (7.75 V rms). **Controls and Switches:** Threshold control, Compression ratio control, Output gain control, Bypass switch, Power switch. Front Panel Indicators: Power LED, Bypass LED, Output level display indicating - 18 to + 14 dB Gain reduction display indicating - 1 to -30 dB. **Connections:** Input: Female XLR. Output: 3 terminal barrier strip. 3 terminal barrier strip. AC: IEC power cord receptacle. **Power Requirements:** 100, 120, 200, 220, 240 Vac, 50/ 60 Hz, 12 Watts. **Operating Temperature** Range: up to 60° C (140° F) ambient. **Dimensions:** Height: Width: Depth: 1.75 inches (4.45 cm). 19.0 inches (48.26 cm). 9.0 inches (22.86 cm). Weight: Shipping: Net: 10 lbs (4.55 kg). 6.3 lbs (2.86 kg). t **Color:** Black. **Enclosure:** Rack mount chassis, 18 GA steel main chassis, 18 GA steel top/rear cover, 1/16 inch thick black anodized alu- minum alloy front panel. Accessories: 15560 600 ohm line transformer. **15550A** 15K ohm input transformer. **Design and Performance Approvals:** Meets the requirements of UL Stan- dard 813. Altec Lansing continually strives to improve products and performance. Therefore, specifications are subject to change without notice. ### **Back Panel of 1712A** # ARCHITECT'S and ENGINEER'S SPECIFICATIONS The compressor/limiter shall be a single channel unit of solid state design that is capable of detecting input levels above the threshold control setting and automatically reducing the gain of the signal level in accordance with the compression ratio control setting. The 0 dB reference level of the detector circuitry shall be selectable to be -10, 0, +4, or +8 dBv. The amount of gain reduction introduced by the system and the output level of the compressor/limiter shall be presented on their respective LED displays. The gain reduction display shall have a range from -1 dB to -30 dB of attenuation and the output level display shall show levels from -18 dB to +14 dB with a variable sensitivity for 0 VU equals -10 dBm to +8 dBm. Automatic bypass and manual hard-wire bypass of the compressor/limiter shall be provided, along with a turn-on delay to eliminate start-up/shutdown transients. The compressor/ limiter shall be capable of operating from a 120/240 VAC, 50/60 Hz line. The compressor/limiter shall meet the following performance criteria. Maximum input level: +20 dBv (7.75 V rms). Input impedance: 20K ohms balanced, 10K ohms unbalanced. Maximum output level: +20 dBm (7.75 V rms). Output impedance: 44 ohms balanced, 22 ohms unbalanced. Frequency response: 20 Hz to 20 kHz, +0,-1 dB. Threshold range: continuously variable from -45 to +20 dB. Compression ratio: continuously variable from 1:1 to -: 1. Attack time: program dependent; 12 msec for 10 dB input level above threshold, 8 msec for 20 dB above threshold level, 4 msec for 30 dB above threshold level. Release time: program dependent; automatically variable from 0 to 750 msec. Output gain: continuously variable from - 20 to + 20 dB. THD: less than 0.03% from 20 Hz to 20 kHz with no compression, less than 0.05% at I kHz with up to 20 dB of compression. IMD (SMPTE): less than 0.03% with no compression. Noise: less than -86 dB below maximum output with the threshold control, compression ratio control, and output gain control fully clockwise. The compressor/limiter shall be 1.75 inches (4.4 cm) high by 19.0 inches (48.3 cm) wide by 9.0 inches (22.9 cm) deep, and shall have a net weight of 6.3 lbs (2.86 kg). The compressor/limiter shall be the ALTEC LAN-SING Model **1712A**. # 1712 A COMPRESSOR/LIMITER OPERATING INSTRUCTIONS # **ALTEC LANSING CORPORATION** P.O. BOX 26105 OKLAHOMA CITY, OK 73126-0105 U.S.A. (405) 324-5311 # 1712A COMPRESSOR/LIMITER ### DESCRIPTION As the quality of sound systems improves in airports, civic centers, and arenas, two problems typically result which need to be addressed; the minimization of level differences between various paging system announcers, and transient protection for loudspeaker systems. The ALTEC LANSING Model 1712A Compressor/Limiter addresses both. Its feed-forward design permits compression ratios up to ∞:1 with complete stability to automatically restrict the system output to a predetermined level. Special compensation circuitry minimizes coloration and audible side-effects for virtually unmatched sonic qualities. These features coupled with its low cost make the 1712A a real value. The single channel unit features an rms-calibrated linear integration detector. Its logarithmic output (linear in decibels) closely matches the characteristics of the human ear for a more natural sounding response when undergoing gain changes. The detector is also compensated to prevent "peak reversion"—a condition that occurs when low frequency signals are below the period chosen for the integration time. Without correction, an rms or averaging detector would revert to peak detection resulting in an overmeasurement of the low frequency energy. This causes over-compression, increased distortion, and audible pumping. The **1712A** is free from these side effects. The input level for a 0 dB reference is determined by an internal jumper which may select -10, 0, +4, or +8 dBv. This permits interfacing with virtually any industry standard line level. Two LED arrays simultaneously display gain reduction and output level for effective monitoring of system operation. The continuously variable Threshold, Compression Ratio, and Output Gain controls are recessed screwdriver-slotted adjustments to minimize inadvertent changes to the control settings. Program-dependent attack and release times assure natural sounding compression without the need for continuous manual adjustment. Other features include a true hard-wired bypass switch, an automatic AC dropout bypass, XLR and barrier strip input connectors, barrier strip output connections, and electronically balanced input and output circuitry. The universal power transformer permits 100, 120, 200, 220, and 240 VAC 50/60 Hz operation. An optional plug-in line output transformer, Model **15560**, is also available. The ALTEC LANSING Model **1712A** Compressor/ Limiter is the choice among professionals where serious level control and transient protection is demanded. ### **SPECIFICATIONS** (reference 0 dBv = 0.775 V rms) **Impedance** 20 kohms balanced 10 kohms unbalanced Nominal Level Selectable by internal jumper for $-10, 0, +4, +8 \, dBv$ Maximum Level + 20 dBv (7.75 V rms) Output: $(reference \ 0 \ dBm = 0.755 \ V \ rms \ across \ 600 \ ohms)$ **Impedance** 44 ohms balanced 22 ohms unbalanced Maximum Level + 20 dBm (7.75 V rms) Frequency Response: (reference 1 kHz) **Threshold Range:** 20 Hz - 20 kHz, + 0/-1 dBContinuously variable from -45 to + 20 dB **Compression Ratio:** Continuously variable from 1:1 to ∞:1 Maximum Compression: 60 dB Attack Time: Program dependent: 12 ms for 10 dB input level above threshold, 8 ms for 20 dB, 4 ms for 30 dB Release Time: Program dependent; automatically variable from 0 to 750 ms; affected by front panel control settings Continuously variable from **Output Gain:** – 20 to + 20 dB (0 dBv input, unity gain, <0.03% no compression, 30 kHz low pass filter) (0 dBv input, unity gain, <0.05% reference 1 kHz, up to 20 dB compression) IMD (SMPTE): (0 dBv input, unity gain, < 0.03% no compression) Noise: (below maximum $< -86 \, dB$ output, output gain control at $\pm 20 \, dB$, 30 kHz low pass filter) **Controls and Switches:** Threshold control Compression ratio control Output gain control Bypass switch Power switch Front Panel Indicators: Power LED Bypass LED Output level display indicating -18 to + 14 dBGain reduction display indicating -1 to -30 dB Connections: Input Female XLR Output AC. 3 terminal barrier strip 3 terminal barrier strip IEC power cord receptacle **Power Requirements:** 100, 120, 200, 220, 240 VAC, 50/60 Hz, 12 Watts **Operating Temperature** Range: up to 60°C (140°F) ambient **Dimensions:** 1¼" H x 19" W x 9" D (4.45 cm H x 48.26 cm W x 22.86 cm D) **Shipping Weight:** 10 lbs (4.55 kg) Net Weight: 6.3 lbs (2.86 kg) Color: Black **Enclosure:** Rack mount chassis Heavy duty front handles 18 GA steel main chassis 18 GA steel top/rear cover ¼ inch thick black anodized aluminum alloy front panel Accessories: 15560 600 ohm output transformer ### ARCHITECT'S AND ENGINEER'S SPECIFICATIONS The compressor/limiter shall be a single channel unit of solid state design that is capable of detecting input levels above the threshold control setting and automatically reducing the gain of the signal level in accordance with the compression ratio control setting. The 0 dB reference level of the detector circuitry shall be selectable to be -10, 0, +4, or +8 dBv. The amount of gain reduction introduced by the system and the output level of the compressor/limiter shall be presented on their respective LED displays. The gain reduction display shall have a range from -1 dB to -30 dB of attenuation and the output level display shall show levels from -18 dB to +14 dB with a variable sensitivity for 0 VU equals -10 dBm to +8 dBm. Automatic bypass and manual hardwire bypass of the compressor/limiter shall be provided, along with a turn-on delay to eliminate startup/shutdown transients. The compressor/limiter shall be capable of operating from a 120/240 VAC. 50/60 Hz line. The compressor/limiter shall meet the following performance criteria. Maximum input level: +20 dBv (7.75 V rms). Input impedance: 20 kohms balanced, 10 kohms unbalanced. Maximum output level: +20 dBm (7.75 V rms). Output impedance: 44 ohms balanced, 22 ohms unbalanced. Frequency response: 20 Hz to 20 kHz, +0,-1 dB. Threshold range: continuously variable from -45 to +20 dB. Compression ratio: continuously variable from 1:1 to ∞ :1. Attack time: program dependent; 12 msec for 10 dB input level above threshold, 8 msec for 20 dB above threshold level, 4 msec for 30 dB above threshold level. Release time: program dependent; automatically variable from 0 to 750 msec. Outut gain: continuously variable from -20 to +20dB. THD: less than 0.03% from 20 Hz to 20 kHz with no compression, less than 0.05% at 1 kHz with up to 20 dB of compression. IMD (SMPTE): less than 0.03% with no compression. Noise: less than -86 dB below maximum output with the threshold control, compression ratio control, and output gain control fully clockwise. The compressor/limiter shall be $1\frac{1}{4}$ " H x 19" W x 9" D, and shall have a net weight of 6.3 lbs. The compressor/limiter shall be the ALTEC LANSING Model 1712A. P.O. BOX 26105, OKLAHOMA CITY, OKLAHOMA 73126-0105, U.S.A. © 1987 ALTEC LANSING CORPORATION ### **OPERATING INSTRUCTIONS** ### **ELECTRICAL** ### 120 VAC, 50/60 Hz Power Connections The compresor/limiter is provided with the primary of the power transformer strapped for 120 Volts from the factory. Refer to Table I for exact strapping details and other voltage options. NOTE - Verify that the line voltage is in accordance with the selected voltage rating BEFORE connecting the compressor/limiter to the AC line. **Table I. Primary Power Conversion Chart** | PRIMARY CONFIGURATION | | | | |-----------------------|--------------|--|--| | VOLTAGE | CONNECT PINS | | | | 100 V | 1-5,2-4 | | | | 120 V | 1-6,3-4 | | | | 200V | 2-5 | | | | 220V | 2-6 | | | | 240V | 3-6 | | | # 100, 200, 220, 240 VAC, 50/60 Hz Power Connections The compressor/limiter may be powered from line voltages other than 120 Volts by re-strapping the primary of the power transformer. Use the following procedures to change the factory strapping to the desired line voltage. - Disconnect the compressor/limiter from the AC power source. - Remove the seven screws securing the top/back cover. - Locate the six voltage selection solder cups on the right side of the circuit board in front of the power transformer. See Figure 1 for location. Referring to Table I, unsolder the jumper wires from the solder cups and resolder them in accordance with the pin designations that correspond to the desired operating voltage. Install the top/back cover with the seven screws previously removed. ### INSTALLATION ### **Rack Mounting** The 1712A may be installed in a standard 19-inch equipment rack. The compressor/limiter requires 13/4 inches of vertical space and mounting is accomplished by using the appropriate four mounting screws supplied. ### Ventilation The compressor/limiter should not be used in areas where the ambient temperature exceeds 60 °C (140 °F). ### **ADJUSTMENTS** ### **Detector Reference Level Selection** A Detector Reference Level Selector is provided to determine the nominal level of the detector circuitry. Selections include — 10, 0, +4, and +8 dBv for interfacing with virtually any industry standard line level. For example if the 1712A is used in a broadcast application where the line level is +8 dBv, the Detector Reference Level should be selected accordingly. The Detector Reference Level-Selector is factory set at a nominal level of 0 dBv. Use the following procedures to select another reference level, if needed. - Disconnect the 1712A from the AC power source. - Remove the seven screws securing the top/back cover. - Select the desired nominal level by placing the jumper on two pins of the six-pin male connector (J4) located near the upper left edge of the circuit board as shown in Figure 1. Table II shows the pin numbers to be connected for each available reference level. Table II. Detector Reference Level Selection Chart | REFERENCE
(dBv) | PIN NUMBER
CONNECTION | |--------------------|--------------------------| | -10 | 1-2 | | 0 | 2-3 | | +4 | 4-5 | | +8 | 5-6 | After making any necessary adjustments, install the top/back cover with the seven screws previously removed. ### **Output Meter Calibration** An Output Meter Calibration trimmer is provided to vary the 0 VU reference level of the Output Meter from -10 to +8 dBm. The Output Meter is calibrated by the factory to indicate "0 dB" when the output level is 0 dBm (0.775 Vrms). To make an adjustment in the reference level of the Output Meter, use the following procedures. - Disconnect the 1712A from the AC power source. - Remove the seven screws securing the top/back cover. - Verify that the Compression Ratio and Threshold Level controls on the front panel are fully clockwise and that the Output Gain control is set on "0". - 4. Feed a 1 kHz signal at the selected nominal level (the level desired for a "0 dB" meter indication) to the signal input. Then adjust the meter calibration trimmer (R78) located near the center of the circuit board until the meter indicates "0 dB". See Figure 1 for location of calibration trimmer. - After making any necessary adjustments, install the top/back cover with the seven screws previously removed. Figure 1. Location of Pertinent Components on Circuit Board ### SIGNAL CONNECTIONS ### **Input Connections** Balanced input connections may be made either to the barrier strip or to the 3-pin XLR connector. For single-ended inputs, strap the low (-) input to ground. Otherwise, the compressor/limiter will see 6 dB less input signal than with a balanced input. Refer to Figure 2 for typical input connection details. ### **Output Connections** Balanced output connections are made to the output barrier strip connector. The 1712A's active balanced output is ground referenced. DO NOT OPERATE WITH THE HIGH (+) OR LOW (-) SIGNAL OUTPUT CONNECTED TO GROUND. Single-ended outputs may be connected between either the high (+) or low (-) signal output and ground. If a single-ended load is connected as described above, a 6 dB loss in output will occur. Refer to Figure 3 for typical output connection details. # INSTALLING OUTPUT ISOLATION TRANSFORMER The Model 15560 output isolation transformer is available to provide an isolated output, if necessary. The circuit board is drilled to accept the 15560. It is recommended that the 15560 transformer be added ONLY when an isolated output is needed. Use the following procedures to install the 15560 transformer. Table III. Controls and Indicators Figure 2. Typical Input Connections Figure 3. Typical Output Connections Table IV. Rear Panel Controls and Features - Disconnect the 1712A from the AC power source. - Remove the seven screws securing the top/back cover. - Remove the seven screws securing the printed circuit board. Locate the mounting holes near the top of the circuit board. See Figure 1 for these locations. - 4. Cut or unsolder the two jumpers inside the transformer-mounting area. - Insert transformer in the drilled holes and solder each pin in place. - Install the printed circuit board with its respective seven screws and the top/ back cover with its seven screws previously removed. ### **OPERATION** ### **Compression Ratio Control** This control sets the ratio of the input level to the output level when the input level is above the threshold reference level. In the case of a compression ratio setting of 2:1, a 2 dB increase in input signal would result in a 1 dB increase in output signal. A compression ratio setting of ∞:1 indicates that an infinite increase in input level would be required for a 1 dB increase in output level; otherwise any finite increase in input level would result in no change in output level. See Figure 4 for various compression ratio curves. ### **Threshold Level Control** This control sets a reference level above which the input signal will be compressed according to the setting of the Compression Ratio control. Input signals that fall below this level will pass through to the output uncompressed, but will still be affected by the Output Gain control. ### **Output Gain Control** This control provides a fixed gain in the output stage from $-20~\mathrm{dB}$ to $+20~\mathrm{dB}$. The Figure 4. Compression Ratio Transfer Curves fixed gain that is added or subtracted by the Output Gain control is not affected by the Threshold Level control setting. However, the gain changes brought about when the input signal exceeds the Threshold Level setting are in addition to those caused by the Output Gain control. ### **APPLICATIONS** ### **Restrict Dynamic Range** The 1712A Compressor/Limiter may be used to restrict the dynamic range of a sound system for clarity by raising the average level. Fixed installation sound systems are used by many different people with various vocal levels. The gain of the system may be set up for a loud-spoken person and a soft-spoken person may not be heard above the ambient noise level. On the other hand, the gain may be set for a soft-spoken person and a loud-spoken person may overload the system and make the listeners feel uncomfortable. To solve this problem, the following steps may be used. - Set up the system gain to accommodate the soft-spoken person. - Set the 1712A Compressor/Limiter for low compression (about 2:1). Adjust the Threshold Level control to the desired maximum input level. - If the output level of the system is still too high for the loud-spoken person, increase the Compression Ratio control until the desired level is attained. ### Loudspeaker Protection The 1712A Compressor/Limiter may also be used to protect compression drivers and loudspeakers from excessive levels and transients. Limiting the signal allows high levels to be maintained without damaging the loudspeaker. Speaker damage would normally occur due to excessive heat build-up and over-excursion. In this application, the 1712A may be set up in the following manner. - Set the Compression Ratio control for a ratio of 20:1 to ∞:1. - Set the Treshold Level control to the highest permissible level. This will limit the signal at the level just below the maximum power handling of the loudspeaker. Figure 5 shows the limiting effect of the 1712A on an excessive input signal. ### - NOTE - The overall best way to set the controls on the 1712A in any application is to follow the above procedures and listen for the desired effects. Then change the settings again, if necessary. Figure 5. An Input Level and Its Corresponding Output Level at ∞:1 Compression Ratio # 1712A COMPRESSOR/LIMITER # **SERVICE INSTRUCTIONS** # * * * CAUTION * * * No user serviceable parts inside. Hazardous voltage and currents may be encountered within the chassis. The servicing information contained within this document is for use only by ALTEC LANSING Corp. authorized warranty stations and qualified service personnel. To avoid electric shock, DO NOT perform any servicing other than that contained in the Operating Instructions unless you are qualified to do so. Refer all servicing to qualified service personnel. ### **SERVICE INSTRUCTIONS** CAUTION These service instructions are for use by qualified personnel only. To avoid electrical shock do not perform any servicing other than that outlined in the Operating Instructions unless you are qualified to do so. Refer all servicing to qualified service personnel. ### **Alignment Procedure** The following alignment procedure requires the following equipment: Digital Voltmeter (DC) Signal Generator Oscilloscope - Disconnect the 1712A from the AC power source. - Remove the seven screws securing the top/back cover. - Set the Compression Ratio control to ∞:1 setting; the Threshold Level control to - 10 dB setting; and the Output Gain control to 0 dB setting. - Apply an input signal of 100 Hz sine wave at 0 dB (0.775 Vrms) to the input connector. Connect oscilloscope probe to TP1 (see Figure 1 for location) and observe a mildly distorted 200 Hz sine - waveform. Adjust the symmetry trim (R17) for equal peak amplitude of the waveform. - Connect the DC digital voltmeter to TP2 and adjust the zero trim (R23) for 0.5 VDC on the DC digital voltmeter. - Install the top/back cover with the seven screws previously removed. ### SERVICE INFORMATION Service must be performed by an ALTEC LANSING CORP. Qualified Service Representative. For Factory Service: - Ship the unit prepaid to: ALTEC LANSING Customer Service/ Repair 10500 West Reno Avenue Oklahoma City, OK 73128 U.S.A. - Include with the unit a written description of the problem, along with any other helpful information such as where used, how used, etc. For applications assistance or other technical information, call (405) 324-5311, Telex 160369, or write: ALTEC LANSING Technical Assistance P.O. Box 26105 Oklahoma City, OK 73126-0105 U.S.A. - CAUTION - No user serviceable parts inside. Hazardous voltages and currents may be encountered within the chassis. Installation and service information within this document is for use only by ALTEC LANSING Corp. approved sound contractors, factory authorized warranty stations, and qualified service personnel. Customer modifications to ALTEC LANS-ING products are not recommended. Such modifications shall be at the customer's sole expense, and any damage or injury to persons or property resulting therefrom shall not be covered under warranty or otherwise. REPAIR PERFORMED BY OTHER THAN AUTHORIZED WARRANTY STATIONS (DEALERS) OR QUALIFIED PERSONNEL SHALL VOID THE WARRANTY PERIOD OF THIS UNIT. TO AVOID LOSS OF WARRANTY, SEE YOUR NEAREST ALTEC LANSING AUTHORIZED DEALER, OR CALL ALTEC LANSING CUSTOMER SERVICE DIRECTLY AT (405) 324-5311, TELEX 160369, OR WRITE: ALTEC LANSING CUSTOMER SERVICE/REPAIR P.O. BOX 26105 OKLAHOMA CITY, OK 73126-0105 U.S.A. Figure 6. Block Diagram of the 1712A # PARTS LIST ### CIRCUIT BOARD ASSEMBLY (27-01-025894) | Reference
Designator | Ordering
Number | Name and Description | |-----------------------------|--------------------|-------------------------------| | C1,2,17,18 | 15-06-124440 | Cap., 100 pF, 630V | | C3,12,13,15 | 15-06-124499 | Cap., 150 pF, 630V | | C5,9,14,16,24 | 15-01-124507 | Cap., 1 μF, 50V | | C6,7 | 15-01-124506 | Cap., 4.7 μF, 50V | | C8,20 | 15-02-124498 | Cap., 47 pF, 1000V | | C10 | 15-01-124508 | Cap., 47 μF, 50V | | C11 | 15-06-124517 | Cap., .0047 μF, poly | | C19,21,29,30,32, | 15-01-124502 | Cap., 10 μF, 50V | | 33,39,41,44,46,
47,50,58 | 15-01-12-302 | οαρ., το μι , σον | | C22 | 15-06-124518 | Cap., .01 μF, poly | | C25 | 15-01-124504 | Cap., 22 µF, 50V | | C26 | 15-01-124503 | Cap., 100 μF, 50V | | C27.28 | 15-01-124505 | Cap., 1000 μF, 50V | | C31,34,35,36,37, | 15-02-124437 | Cap., .1 μF, 50V, disk | | 38,40,42,43,45, | | | | 48,49,53,54,55, | | | | 56,57,59,60,61, | | | | 62,63,64 | | | | CR1-4,10-13 | 48-01-122601 | Diode, signal, 1N4448 | | CR5-9 | 48-02-042787 | Rect., 1N4004 | | CR14,15 | 39-01-124532 | LED, red, 1.7V | | CR16-25 | 39-01-124519 | 10 LED Array, green | | CR26-35 | 39-01-124520 | 10 LED Array | | F1 | 51-04-100462 | Fuse, 0.25A, 250V | | l K1 | 45-01-123000 | Relay, 12V, 1A, DPDT | | Q1 | 48-03-120234 | Transistor, MPSA93, PNP, 200V | | Q2 | 48-03-120159 | Transistor, MPSU10, NPN, 300V | | R1-5,8,15,18,29, | 47-03-109437 | Res., 10 kΩ, ±1%, ¼W | | 32,33,41,42,43, | 47 00 100407 | 1100i, 10 kz, ± 170, 7400 | | 46,56,57,58,62 | | | | R6 | 47-03-108444 | Res., 4.12 kΩ, ±1%, ¼W | | R7,19 | 47-03-124490 | Res., 6.34 kΩ, ±1%, ¼W | | R9 | 47-03-124489 | Res., 31.6 kΩ, ±1%, ¼W | | R10,90,91,92,94, | 47-01-102106 | Res., 15 kQ, ±5%, ¼W | | 96 | 47-01-102100 | 1103., 10 Kg, ±070, 7444 | | R11 | 47-01-102112 | Res., 27 kQ, ±5%, ¼W | | R12,40,76,77,81, | 47-01-102102 | Res., 10 kQ, ±5%, ¼W | | 83,86 | 77-01-102102 | 1100., 10 Rx, ±0/0, /444 | | R13,31,97 | 47-01-102086 | Res., 2.2 kΩ, ±5%, ¼W | | R14 | 47-01-102000 | Res., 910 kΩ, ±5%, ¼W | | R16,22 | 47-01-121767 | Res., 1 MQ, ±5%, ¼W | | 110,22 | 77-01-100-131 | 1103., 1 11130, ± 0 /0, /4 11 | | Reference | Ordering | | |------------------------------|--------------|---| | Designator | Number | Name and Description | | R17 | 47-06-122135 | Pot., 50 kΩ, ±30%, trim | | R20 | 47-03-124487 | Res., 40.2Ω, ±1%, ¼W | | R21,27,28 | 47-03-119305 | Res., 100 kΩ, ±1%, ¼W | | R23,78 | 47-06-122136 | Pot., $100 \text{ k}\Omega$, $\pm 30\%$, trim | | R24 | 47-03-124488 | Res., 1 MΩ, ±1%, ¼W | | R25,45 | 47-06-124523 | Pot., 10 kΩ, linear taper | | R26 | 47-06-124524 | Pot., 10 kΩ, rev. audio taper | | R30 | 47-03-124491 | Res., 3.3 MΩ, ±5%, ¼W | | R38,39,74,84,85,
89,98,99 | 47-01-102080 | Res., 1.2 kΩ, ±5%, ¼W | | R44 | 47-01-102131 | Res., 150 kΩ, ±5%, ¼W | | R47,64 | 47-03-121532 | Res., 1 kΩ, ±1%, ¼W | | R48 | 47-03-121552 | Res., 249Ω, ±1%, ¼W | | R49.51 | 47-03-124486 | Res., 47Ω, ±5%, ¼W | | R50,53,80,82,87 | 47-01-102109 | Res., 20 kΩ, ±5%, ¼W | | R52,54 | 47-01-102103 | Res., 100 kΩ, ±5%, ¼W | | R55 | 47-03-109434 | Res., 20 kΩ, ±1%, ¼W | | R59,60 | 47-01-102038 | Res., 22Ω, ±5%, ¼W | | R61 | 47-03-124485 | Res., 2.49 kΩ, ±1%, ¼W | | R63 | 47-01-102089 | Res., $3 k\Omega$, $\pm 5\%$, $\frac{1}{4}W$ | | R65,66 | 47-01-102071 | Res., 510 kΩ, ±5%, ¼W | | R67 | 47-01-102065 | Res., 300Ω, ±5%, ¼W | | R68 | 47-01-102061 | Res., 200Ω, ±5%, ¼W | | R69-73 | 47-01-102054 | Res., 100Ω, ±5%, ¼W | | R75 | 47-01-102116 | Res., 39 kΩ, ±5%, ¼W | | R79 | 47-01-102098 | Res., 6.8 kΩ, ±5%, ¼W | | R88 | 47-01-108933 | Res., 1.2 MΩ, ±5%, ¼W | | R93 | 47-01-113206 | Res., 5.6 MΩ, ±5%, ¼W | | R95 | 47-01-107373 | Res., 10 MΩ, ±5%, ¼W | | R100 | 47-01-102050 | Res., 68Ω, ±5%, ¼W | | S1 | 51-02-124478 | Switch, PB, power, DPDT | | S2 | 51-02-124479 | Switch, PB, DPDT | | T1 | 56-08-025906 | Transformer, power | | U1,2,3,9,10 | 17-01-124461 | IC, TL074CN quad op-amp | | U4,6 | 17-01-122832 | IC, 5532A dual op-amp | | U5 | 17-01-124482 | IC, SSM2013 VCA | | U7,8 | 17-01-124460 | IC, 3346P transistor array | | U11 | 17-01-122347 | IC, LM3915 LED driver | | U12,13,14 | 17-01-124463 | IC, LM339N quad comparator | | U15 | 17-01-121660 | IC, regulator, + 15V, MC7815CT | | U16 | 17-01-121659 | IC, regulator, - 15V, MC7915CT | Figure 7. Schematic Drawing of Compressor/Limiter (11D097-01)